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Introduction

An old and well-known theorem of Sylvester for consecutive integers [1] states that a product of k

consecutive integers, each of which exceeds k, is divisible by a prime greater than k.

First, we give some notations that will be used throughout the project.

Let pi denote the ith prime number. Thus p1 = 2, p2 = 3, · · · . We always write p for a prime

number. For an integer ν > 1, we denote by ω(ν) and P (ν) the number of distinct prime divisors

of ν and the greatest prime factor of ν, respectively.

Further, we put ω(1) = 0 and P (1) = 1. For positive real number ν and integers l, d with d ≥ 1,

gcd(l, d) = 1, we denote

π(ν) =
∑
p≤ν

1,

πd(ν) =
∑
p≤ν

gcd(p,d)=1

1,

πd(ν, d, l) =
∑
p≤ν

p≡l(mod d)

1.

We say that a number is effectively computable if it can be explicitly determined in terms of given

parameters. We write computable number for an effectively computable number. Let d ≥ 1, k ≥ 2,

n ≥ 1 and y ≥ 1 be integers with gcd(n, d) = 1. We denote by

∆ = ∆(n, d, k) = n(n+ d)···(n+ (k − 1)d)

and we write

∆(n, k) = ∆(n, 1, k).

Further for x ≥ k, we write

∆
′
= ∆

′
(x, k) = ∆(x− k + 1, k).

In the above notation, Sylvester’s theorem can be stated as

P (∆(n, k)) > k if n > k. (1)
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On the other hand, there are infinitely many pairs (n, k) with n ≤ k such that P (∆) ≤ k. We

observe that (1) is equivalent to

ω(∆(n, k)) > π(k) if n > k. (2)

Here we notice that

ω(∆(n, k)) > π(k)

since k! divides ∆ Let d > 1. Sylvester [1] proved that

P (∆) > k if n ≥ k + d. (3)

Note that (3) includes (1). Langevin [2] improved (3) to

P (∆) > k if n > k

Finally Shorey and Tijdeman [3] proved that

P (∆) > k unless (n, d, k) = (2, 7, 3) (4)

In Chapter 1, we see the definitions of Elementary Number Theory [4].

In Chapter 2, we see the proof of Sylvester’s Theorem. The proof is due to Erdos [5], and the

simplifications have been made. This proof is elementary and self-contained; it does not use the

prime number theory results. It collects specific estimates on the π function and other functions

involving primes.

Chapter 3 gives a brief survey on refinements and generalizations of Sylvester’s Theorem. These

include the statements of the results of [Laishram and Shorey [6, 7]] We state here two of following

results (i) and (ii) appeared.

(i) Let n > k. Then ω(∆(n, k)) ≥ π(k) + [ 34π(k)] − 1 except when (n, k) belongs to an explicitly

given finite set [Laishram and Shorey [6]].

(ii) Let d > 1. Then ω(∆) ≥ π(2k)− 1 except when (n, d, k) = (1, 3, 10).[Laishram and Shorey [7]]

This is best possible for d = 2 since ω(1·3···(2k−1)) = π(2k)−1. The latter result (ii) solves a

conjecture of Moree [8].

In Chapter 4, we see the Baker’s Explicit abc-Conjecture (Laishram and Shorey [9]). The results

for the proof of Explicit abc- Conjecture is followed to find the values of described table.



Chapter 1

Historical Remarks

Three positive integers a,b, and c do not satisfy the equation an + bn = cn for any integer value of

n greater than two. — Pierre de Fermat (1637)

Algebraic number theory has been widely studied since 500 BC when the Pythagorean theorem

was first introduced. It was developed in two different ways. One for the Fermat equations, and

the other for class field theory. In either way, we have the same purpose: solving Diophantine

equations. A Diophantine equation (named after Diophantus of Alexandria) is a polynomial equa-

tion in two or more unknowns, such that only the integer solutions are studied. One of the easiest

Diophantine equations we have is

X2 + Y 2 = Z2

which is related to the Pythagorean theorem. Infinitely many integral solutions have been found

for this equation such as

(3, 4, 5), (5, 12, 13), (8, 15, 17), · · ·

which we call them Pythagorean triples. One of the most famous and interesting Diophantine

equations in the history of mathematics is

xn + yn = zn

where n is a positive integer. Pierre de Fermat claimed that there are no integral solutions to

the Diophantine equation above when n ≥ 3. This is called the “Fermat’s Last Theorem.” This

theorem was first conjectured in 1637. Fermat claimed that he had a proof, but he did not show

it to the public. This problem was left unsolved for more than 350 years until the first successful

proof was released in 1994 by Andrew Wiles. Hence Fermat’s Last Theorem shows that solving a
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Diophantine equation can be extremely difficult. The best possible situation for solving Diophan-

tine equations is when we work over a unique factorization domain. The complexity of calculation

is simpler than the equations without unique factorization domains. However, this only means

that the calculation is simpler than the other; it still can be extremely difficult.

In this chapter, we review some of the basic definitions and theorems in elementary number theory

and abstract algebra courses. In particular, we focus on primes, congruence’s, and residues.

1.1 Elementary Number Theory

In this section, we will discuss the basic definition and concepts which will be used throughout the

work. In particular, we are discussing Euclid Theorem on Primes and Legendre Symbols [4].

Definition 1.1 If a and b are integers with a ̸= 0, we say that a divides b if there is an integer c

such that b = ac, and we write a | b. If a does not divide b, we write a ∤ b.

Definition 1.2 (Greatest Common Divisor) The greatest common divisor of two integers a

and b, which are not both 0, is the largest positive integer that divides both a and b. It is written

as gcd(a, b).

Definition 1.3 (Relatively Prime) The integers a and b, with a, b ̸= 0, are relatively prime if

gcd(a, b) = 1.

Definition 1.4 (Euclid) There are infinitely many primes.

Around 300 B.C., Euclid proved that there are an infinite number of prime numbers. The proof is

classical and we can explain it to high school students. Suppose that there are only finitely many,

p1, p2, · · · , pk say, then the number p1p2 · · · pk + 1 is not divisible by any of p1, p2, · · · , pk and

hence must either be prime or divisible by a prime not in our list. This contradiction forces an

infinitude of prime numbers, provided there is at least one.

Definition 1.5 Let m be a positive integer. If a and b are integers, we say that a is congruent to

b modulo m, denoted a ≡ b(mod m) if m | (a−b).

Example: We have 5 ≡ 2 (mod 3), since 3 | (5−2). However, 8 ≇ 2 (mod 5) since 5 ∤ (8−2).
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Definition 1.6 (Order of a modulo m) Let m be a positive integer greater than 1, and a an

integer relative prime to m. The order of a modulo m, denoted by ordm(a), is the smallest positive

integer d such that ad ≡ 1(mod m).

Example: If m = 7 and a = 2, then 20 = 1 (mod 7),

21 = 2 (mod 7),

22 = 4 (mod 7),

23 = 1 (mod 7),

and 2 has order 3.

1.2 Legendre Symbol

Definition 1.7 Fix a prime p. Then for any integer a, the Legendre symbol is defined by

(
a

p

)
=


1 if a is quadratic residue (mod p);

−1 if a is quadratic nonresidue (mod p);

0 if p|a.

Lemma 1. [4] Let p be a prime and a ̸= 0. Then x2 ≡ a (mod p) has a solution if and only if

a(p−1)/2 ≡ 1 (mod p).

Proof. For the proof of the forward direction, suppose that x2 ≡ a (mod p) has a solution. Let

x0 be this solution, i.e., x0
(p−1)/2 ≡ a (mod p).

The last congruence follows from Fermat’s Little Theorem.

Conversely, note that a ̸≡ 0 (mod p). So a (mod p) can be viewed as an element of (Z/pZ)∗,

the units of (Z/pZ). Since (Z/pZ)∗ is a cyclic group, there exists some generator g such that

⟨g⟩ = (Z/pZ)∗. So, a = gk, where 1 ≤ k ≤ p−1. From our hypothesis,

a(p−1)/2 ≡ gk(p−1)/2 ≡ 1 (mod p).

Because the order of g is (p−1), (p−1)|k (p−1)
2 . But this implies that 2|k′ . So, k = 2k. Hence we

can write a(mod p) as a ≡ gk ≡ g2k
′

≡ g(k
′
)2 (mod p). Hence, a is a square mod p, completing the

proof.
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Theorem 1.[4] For a prime p and any integer a and b,

a(p−1)/2 ≡
(
a

b

)
(mod p).

Proof. If p|a, the conclusion is trivial. So, suppose p does not divide a. By Fermat’s Little

Theorem, ap−1 ≡ 1 (mod p). We can factor this statement as

ap−1 ≡ (a(p−1)/2 − 1)(a(p−1)/2 + 1) ≡ 0 (mod p).

Thus, a(p−1)/2 ≡ ±1 (mod p). We will consider each case separately.

If a(p−1)/2 ≡ (mod p), then by the previous lemma, there exists a solution to the equation x2 ≡

a (mod p). But that would mean that (
a

p

)
= 1.

Otherwise, if a(p−1)/2 ≡ −1 (mod p), then by the previous lemma, there is no solution to the

equation x2 ≡ a (mod p). But that would mean that

(
a

p

)
= −1

Hence we conclude that

a(p−1)/2 ≡
(
a

b

)
(mod p).

Theorem 2. [4] For a prime p and any integer a and b,

(
ab

p

)
=

(
a

p

)(
b

p

)

Proof. We will use Theorem (1) to prove this result, Thus,

(
ab

p

)
= (ab)(p−1)/2 (mod p)

Similarly, (
a

p

)
= (a)(p−1)/2 (mod p)

and, (
b

p

)
= (b)(p−1)/2 (mod p)
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But then,

(
ab

p

)
= (ab)(p−1)/2 = (a)(p−1)/2(b)(p−1)/2 (mod p) =

(
a

p

)(
b

p

)
(mod p)

Thus, (
ab

p

)
=

(
a

p

)(
b

p

)
which is what we wanted to show.

Now in the next theorem, we will state some more properties of the Legendre symbol.

Theorem 3. For all odd primes p,

(
−1

p

)
=

 1 if p ≡1 (mod 4);

−1 if p ≡ 3 (mod 4).

i.e. (
−1

p

)
= (−1)(p−1)/2

Also, (
2

p

)
=

 1 if p ≡ ± 1 (mod 8);

−1 if p ≡ 3, 5 (mod 8).

Now, we state the famous Law of Quadratic Reciprocity which can be proved using properties of

the Legendre symbol and Gauss sums.

Theorem 4. [4] (Law of Quadratic Reciprocity [ page 87 [4])] Let p and q be odd primes. Then,

(
p

q

)
=

(
q

p

)
(−1)

p−1
2

q−1
2

Definition 2. Let b be a positive odd integer, and suppose that b = b1 · · · bl, a product of (not

necessarily distinct) primes. For an integer a relatively prime to b, the Jacobi symbol z
(
a
b

)
is

defined to be the product (
a

b

)
=

(
a

b1

)
· · ·

(
a

bl

)
where

(
a
bi

)
, i = 1, 2, · · · l denotes the Legendre symbol. If b = 1,

(
a
b

)
= 1. We now state some

properties of the Jacobi symbol (for a proof, refer to [4])
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Theorem 5. (Properties of the Jacobi symbol)

(1) If b is a prime, the Jacobi symbol
(
a
b

)
is the Legendre symbol

(
a
b

)
(2) If

(
a
b

)
= −1, then a is not a quadratic residue (mod b). The converse need not hold if b is not

a prime.

(3)
(aa′

bb′) =
(
a
b

)(
a
b′
)(

a
b′
)(

a
′

b′
)

if aai and bbi are relatively prime.

(4)
(
a2

b

)
=

(
a
b2

)
= 1 if a and b are relatively prime.

(5)
(−1

b

)
= (−1)(b−1)/2 = 1 if b ≡ 1(mod 4) and = −1 if ≡ −1(mod 4)

(6)
(
2
b

)
= (−1)(b

2−1)/8 = 1 if b ≡ ±1(mod 8) and = −1 if b ≡ ±3 (mod 8)

(7) If a and b are relatively prime odd positive integers, then

(
a

b

)
=

(
b

a

)
(−1)

a−1
2

b−1
2

(For a proof, see pg. 82, 83 of [4]).



Chapter 2

Sylvester’s Theorem for

Consecutive Integers

In this chapter, we consider the Theorem of Sylvester [1] for consecutive integers stated in the

Introduction, see (1).

Theorem 1.0.1. Let d = 1. Then

P (∆) > k if n > k. (1.0.1)

In Laishram and Shorey [7] consider n ≤ k. For 1 ≤ n ≤ pπ(k)+1−k where pπ(k)+1 is the smallest

prime exceeding k, we see that P (∆) ≤ k since n+ k−1 < pπ(k)+1. Thus it is necessary to assume

n > pπ(k)+1−k for the proof of P (∆) > k. Then n = p(π(k)+1−k + r for some 1 ≤ r < k and hence

pπ(k)+1 = n+ k−r is a term in ∆, giving P (∆) > k.

For x ≥ 2k, x = n + k−1 and a prime p > k, we see that p divides
(
x
k

)
if and only if p divides

∆ = ∆(n, k). Thus we observe that (1.0.1) is equivalent to the following result.

Theorem 1.0.2. If x ≥ 2k, then
(
x
k

)
contains a prime divisor greater than k.

Therefore, we shall consider Theorem 1.0.2. The proof is due to Erdös [1]. This proof is elementary

and self-contained; it does not use the prime number theory results.

2.1 Lemmas for the Proof of Theorem 1.0.2

Lemma 1.1.1. [7] Let X be a positive real number and k0 a positive integer. Suppose that

pi+1−pi < k0 for any two consecutive primes pi < pi+1 ≤ pπ(X)+1. Then P (x(x−1)···(x−k +

1)) > k for 2k ≤ x < X and k ≥ k0.
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Proof. Let 2k ≤ x < X. We may assume that none of x, x−1,···, x−k + 1 is a prime, since

otherwise the result follows. Thus

pπ(x−k+1) < x−k + 1 < x < pπ(x−k+1)+1�pπ(X)+1.

Hence by our assumption, we have

k−1 = x−(x−k + 1) < pπ(x−k+1)+1−pπ(x−k+1) < k0,

which implies k−1 < k0−1, a contradiction.

Lemma 1.1.2. [ [7]] Suppose that Theorem 1.0.2 holds for all primes k, then it holds for all k.

Proof. Assume that Theorem 1.0.2 holds for all primes k. Let k1 ≤ k < k2 with k1, k2 consecutive

primes. Let x ≥ 2k. Then x ≥ 2k1 and x(x−1)···(x−k1 + 1) has a prime factor p > k1 by our

assumption. Further, observe that p ≥ k2 > k since k1 and k2 are consecutive primes. Hence p

divides x···(x−k1+1)(x−k1)···(x−k+1)
k! =

(
x
k

)
.

By Lemma 1.1.2, it is enough to prove the Theorem 1.0.2 for k prime, which we assume from now

on. Further, take x ≥ 2k.

Lemma 1.1.3. [10] Let pa |
(
x
k

)
. Then pa ≤ x.

Proof. It is observed that

ordp

(
x

k

)
=

∞∑
ν=1

([
x

pν

]
−
[
x− k

pν

]
−
[
k

pν

])

Each of the summand is at most 1 if p ≤ x and 0 otherwise. Therefore ordp
(
x
k

)
≤ s where

ps ≤ x < ps+1. Thus

pa ≤ pordp(xk)‘ ≤ ps ≤ x (1.1.1)

Lemma 1.1.4. [10] For k > 1, we have

(
2k

k

)
>

4k

2
√
k

(1.1.2)

and (
2k

k

)
<

4k√
2k

(1.1.3)

Proof. For k > 1, we have

1 >

(
1− 1

32

)(
1− 1

52

)
...

(
1− 1

(2k − 1)2

)
=

2 · 4
32

4 · 6
52

...
(2k − 2) · 2k
(2k − 1)2
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>
1

4k

(
2kk!

3 · 5 · · · (2k − 1)

)2

=
1

4k

(
4k(k!)2

(2k)!

)2

implying (1.1.2). Further we have

1 >

(
1− 1

22

)(
1− 1

42

)
...

(
1− 1

(2k − 2)2

)
=

1 · 3
22

3 · 5
42

...
(2k − 3) · (2k − 1)

(2k − 2)2

>
1

2k − 1

(
3 · 5 · · · (2k − 1)

2kk!

)2

>
4k2

2k

(
2k!

4k(k!)2

)2

implying (1.1.3)

Lemma 1.1.5. [10] We have ∏
p≤x

p
∏

p≤
√
x

p
∏

p≤ 3
√
x

p · ·· < 4x

Proof. We see that for every prime p and a positive integer a with

x < pa ≤ 2x,

we have,

ordp

(
2x

x

)
= ordp

(
(2x!)

(x!)2)

)
=

∞∑
ν=1

([
2x

pi

]
− 2

[
2x

pi

])
≥ 1 (1.1.5)

since [
2x

pi

]
− 2

[
x

pi

]
≥ 0 and

[
2x

pa

]
−

[
x

pa

]
= 1.

Let ⌈ν⌉ denote the least integer greater than or equal to ν. Let 2m−1 ≤ x < 2m and we put

a1 = ⌈x
2
, ⌉, a2 = ⌈ x

22
⌉, · · · , ah = ⌈ x

2h
⌉, · · · , am = ⌈ x

2m
⌉ = 1.

Then

a1 > a2 > · · · > am

and

ah <
x

2h
+ 1 =

2x

2h+1
+ 1

implies

ah ≤ 2ah+1 + 1

Also, we have 2a2 < x
2 + 2 ≤ a1 + 1. Therefore

2a2 ≤ a1 + 1 (1.1.6)
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Since 2a1 ≥ x, we see that

(1, x] ∪m
h=1 (ah, 2ah].

Let p and r be given such that pr ≤ x < pr+1. Let 1 ≤ i ≤ r. Then pi ≤ x. It is clear from the

above inclusion that there exists ki such that

aki
< pi ≤ 2aki

Observe that aki ̸= akj for 1 ≤ j < i ≤ r since pakj < pj+1 ≤ pi ≤ 2aki . Thus we see from (1.1.5)

that

pr |
(
2a1
a1

)(
2a2
a2

)
· · ·

(
2am
am

)
Hence we have

∏
p≤x

p
∏

p≤
√
x

p
∏

p≤ 3
√
x

p · ·· =
∏

pr≤x<pr+1

≤
(
2a1
a1

)(
2a2
a2

)
· · ·

(
2am
am

)

the middle product being taken over all prime powers pr with pr�x < pr+1. To complete the proof

of the lemma, we show that

(
2a1
a1

)(
2a2
a2

)
· · ·

(
2am
am

)
< 4x. (1.1.7)

By direct calculation, we check that (1.1.7) holds for x ≤ 10. For example, when x = 5, we have

a1 = 3, a2 = 2, a3 = 1 so that

(
2a1
a1

)(
2a2
a2

)
· · ·

(
2a3
a3

)
= 20 ∗ 6 ∗ 2 < 45.

Suppose that x > 10 and (1.1.7) holds for any integer less than x. Then

(
2a1
a1

)(
2a2
a2

)
· · ·

(
2am
am

)
<

(
2a1
a1

)
42a2−1 (1.1.8)

which we obtain by applying (1.1.7) with x = 2a2−1 and seeing that

⌈1
2
(2a2 − 1), ⌉ = a2, ⌈

1

4
(2a2 − 1), ⌉ = ⌈a2

2
⌉ = a3. · · · .

We obtain from (1.1.3) that (
2x

x

)
< 4x−1
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for x ≥ 8. Hence we see that

(
2a1
a1

)(
2a2
a2

)
· · ·

(
2am
am

)
< 4a1−1+2a2−1 (1.1.9)

Lemma 1.1.6. [10] Assume that

P

((
x

k

))
≤ k (1.1.10)

holds. Then we have

(i) x < k2 for k ≥ 11.

(ii) x < k
3
2 for k ≥ 37

Proof: We have (
x

k

)
=

x

k

x− 1

k − 1
· · · x− k + 1

1
>

(
x

k

)k

From P
((

x
k

))
≤ k and pa |

(
x
k

)
, we get

(
x
k

)
≤ xπ(k). Comparing the bounds for

(
x
k

)
, we have

xk

kk
<

(
x

k

)
≤ xπ(k) implies x < k

k
k−π(k)

From (1.1.10) and Lemma 1.1.3, we have
(
x
k

)
≤ xk. Comparing the upper and lower bound for

(
x
k

)
,

we derive that

x < k
k

k−π(k) . (1.1.11)

For k ≥ 11, we exclude 1 and 9 to see that there are at most [k+1
2 ]−2 odd primes upto k. Hence

π(k) ≤ 1 + [k+1
2 ]− − 2 ≤ k

2 for k ≥ 11 giving x < k2 for k ≥ 11. Further the number of composite

integers ≤ k and divisible by 2 or 3 or 5 is

a1 = ⌈k
2
⌉+ ⌈k

3
⌉+ ⌈k

5
⌉ − ⌈k

6
⌉ − ⌈ k

10
⌉ − ⌈ k

15
⌉+ ⌈ k

30
⌉ − 3 ≥

⌈k
2
⌉+ ⌈k

3
⌉+ ⌈k

5
⌉+ ⌈ k

30
⌉ − ⌈k

6
⌉ − ⌈ k

10
⌉ − ⌈ k

15
⌉ − 7

=
11

15
k − 7

Thus we have π(k) ≤ k− 1− ( 1115k− 7) for k ≥ 90. . By direct computation, we see that π(k) ≤ k
3

for 37 ≤ k < 90. Hence

k

k − π(k)
=

 2 for k ≥ 11

3
2 for k ≥ 37

which, together with (1.1.11), proves the assertion of the lemma.





Chapter 3

A Survey of Refinements and

Extensions of Sylvester’s Theorem

Let n, d and k ≥ 2 be positive integers. For a pair (n, k) and a positive integer h, we write [n, k, h]

for the set of all pairs (n, k),···, (n + h−1, k) and we set [n, k] = [n, k, 1] = (n, k). Let W (∆)

denote the number of terms in ∆ divisible by a prime > k. We observe that every prime exceeding

k divides at most one term of ∆. On the other hand, a term may be divisible by more than one

prime exceeding k. Therefore we have

W (∆) ≤ ω(∆)−πd(k) (3.0.1)

If max(n, d) ≤ k, we see that n + (k−1)d ≤ k2 and therefore no term of ∆ is divisible by more

than one prime exceeding k. Thus

W (∆) = ω(∆)− πd(k) if max(n, d) ≤ k (3.0.2)

We are interested in finding lower bounds for P (∆), ω(∆) and W (∆). The first result in this

direction is due to Sylvester [1] who proved that

P (∆) > k if n ≥ d+ k. (3.0.3)

This immediately gives

ω(∆) ≥ πd(k) if n ≥ d+ k. (3.0.4)

We give a survey of several results in this direction.
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3.1 Improvements of ω(∆(n, k)) > π(k)

Let d = 1. A proof of Sylvester’s result is given in Chapter 1. The result of Sylvester was

rediscovered by Schur and Erdos [5]. Let k = 2 and n > 2. We see that ω(n(n + 1)) ̸= 1 since

gcd(n, n+ 1) = 1. Thus ω(n(n+ 1)) ≥ 2.

Suppose ω(n(n+1) = 2. Then both n and n+1 are prime powers. If either n or n+1 is a prime,

then n+1 or n is a power of 2, respectively. A prime of the form 22
m

+1 is called a Fermat prime

and a prime of the form 2m−1 is called a Mersenne prime. Thus we see that either n is a Mersenne

prime or n + 1 is a Fermat prime. Now assume that n = pα, n + 1 = qβ where p, q are distinct

primes and α, β > 1. Thus qβ−pα = 1, which is Catalan equation. Thus n = 8 is the only other n

for which ω(n(n+ 1)) = 2. For all other n, we have ω(n(n+ 1)) ≥ 3. Let k ≥ 3. We observe that

in Laishram and Shorey [6].

ω(∆(n, k)) = π(2k) if n = k + 1 (3.1.1)

If k + 1 is prime and 2k + 1 is composite, then from (3.1.1) by writing

∆(k + 2, k) = ∆(k + 1, k)
2k + 1

k + 1

that

ω(∆(k + 2, k)) = π(2k)−1. (3.1.2)

Let k + 1 be a prime of the form 3r + 2. Then 2k + 1 = 3(2r + 1) is composite. Since there are

infinitely many primes of the form 3r + 2, Laishram and Shorey [6] that there are infinitely many

k for which k+1 is prime and 2k+1 is composite. Therefore (3.1.2) is valid for infinitely many k.

Thus an inequality sharper than ω(∆(n, k)) ≥ π(2k)−1 for n > k is not valid.

Saradha and Shorey [11] [Corollary 3] extended the proof of Erdos [5] given in Chapter 2 to sharpen

(3.0.4) and gave explicit bounds of ω(∆(n, k)) as

ω(∆(n, k)) ≥ π(k) +

[
1

3
π(k)

]
+ 2 if n > k > 2

unless (n, k) ∈ S1 where S1 is the union of sets ( [4,3], [6, 3, 3], [16, 3], [6, 4], [6, 5, 4], [12, 5], [14,

5, 3], [23, 5, 2], [7, 6, 2], [15, 6], [8, 7, 3], [12, 7], [14, 7, 2], [24, 7], [9, 8], [14, 8], [14, 13, 3], [18, 13],

[20, 13, 2], [24, 13], [15, 14], [20, 14], [20, 17]). (3.1.4)
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(Laishram and Shorey [6]) improved it to 3
4 . Define

δ(k) =


2 if 3 ≤ k ≤ 6

1 if 7 ≤ k ≤ 16

0 otherwise

so that [
3

4
π(k)

]
+ δ(k) ≥

[
1

3
π(k)

]
+ 2.

We have Theorem 3.1.1. Let n > k ≥ 3. Then

ω(∆(n, k)) ≥ π(k) +

[
3

4
π(k)

]
− 1 + δ(k) (3.1.5)

unless

(n, k) ∈ S1 ∪ S2

where S1 is given by (3.1.4) and S2 is the union of sets. We note here that the right hand sides

of (3.1.3) and (3.1.5) are identical for 3 ≤ k ≤ 18. Theorem 3.1.1 is an improvement of (3.1.3)

for k ≥ 19. The proof of this Theorem uses sharp bounds of the π function due to Dusart given

by Lemma 2.0.2. We derive the following two results from Theorem 3.1.1. We check that the

exceptions in Theorem 3.1.1 satisfy ω(∆(n, k)) ≥ π(2k)−1.

Corollary 3.1.2. Let ϵ > 0 and n > k. Then there exists a computable number k0 depending only

on ϵ such that for k ≥ k0, we have

ω(∆(n, k)) ≥ (2−ϵ)π(k).

We end this section with a conjecture of Grimm [11]:

Suppose n, n+ 1, · · · , n+ k−1 are all composite numbers, then there are distinct primes pij such

that pij | (n+ j) for 0 ≤ j < k.

This conjecture is open. The conjecture implies that if n, n+1, · · · , n+k−1 are all composite, then

ω(∆(n, k)) ≥ k which is also open. Let g(n) be the largest integer such that there exist distinct

prime numbers P0,···Pg(n) with Pi | n + i. A result of Ramachandra, Shorey and Tijdeman

[12] states that g(n) > c1

(
log n

log log n

)
where c1 > 0 is a computable absolute constant. Further

Ramachandra, Shorey and Tijdeman [13] showed that

ω(∆(n+ 1, k)) ≥ k for 1 ≤ k ≤ exp (c2(logn) 1
2 )

where c2 is a computable absolute constant.





Chapter 4

Baker’s Explicit abc-Conjecture

The abc-Conjecture is one of the most interesting recent Conjectures in number theory. The past

decade or so has been marked by great progress in number theory, and concurrent statements

of Conjectures the resolution of which would seem to require further steps forward. The abc-

Conjecture sits among this group of statements in a web of equivalences and implications which give,

if nothing else, at least heuristic evidence for their truth. The goal of this dissertation is to highlight

some of the many implications of this Conjecture; in the process much interesting mathematics is

discussed. We begin by stating the Conjecture. Like many other famous Conjectures in number

theory, it appears innocuous.

The Conjecture of Masser-Oesterle, popularly known as abc-Conjecture, has many consequences.

We use an explicit version due to Baker to solve Explicit abc - Conjecture.

4.1 Introduction

In this section we will see Mason’s Inequality, the polynomial version of the ABC Conjecture

Mason Theorem: [page 2 [14]] Let A(x), B(x), C(x) be polynomials in C[x] are nonzero, rela-

tively prime polynomials, not all constant, and if

A+B = C

then

max{degA, degB, degC} ≤ |N(ABC)|−1.
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Mason’s Inequality can be used to tackle Fermat’s Last Equation where the exponents are dif-

ferent.

Generalized Fermat’s Equation: [page 12 [14]] There are no co-prime non-constant polyno-

mial solutions to the generalized Fermat equation:

A(t)p +B(t)q = C(t)r

when
1

p
+

1

q
+

1

r
≤ 1. (i)

Proof. By Mason’s Inequality

max{p degA, q degB, r degC} ≤ |N(ApBqCr)|−1 = |N(ABC)|−1.

By equation (i) we have

|N(ABC)| ≤ degA+ degB + degC

=
p degA

p
+

qdegB

q
+

r degC

r

≤
(1
p
+

1

q
+

1

r

)
max{p degA, q degB, r degC}

≤ max{p degA, q degB, r degC}

Then we obtain

max{p degA, q degB, r degC ≤ max{p degA, q degB, r degC − 1,

which is a contradiction.

In Mason’s Inequality, we had no ϵ in the exponent. A natural first thought is to get rid of the ϵ.

Will getting rid of the ϵ work?

Suppose that A, B, and C, be integers are each nonzero, relatively prime factor, and if

A+B = C

For the case of polynomials we had

max{degA, degB, degC} < |N(ABC)|.



21

So we might conjecture the analogue

max{|A|, |B|, |C|} < |Rad(ABC).| (ii)

However, (ii) would be false, let’s consider

1 + 23 = 32

then (ii) would have 9 < 6;

33 + 5 = 25,

would have 32 < 30;

25 + 72 = 34,

would have 81 < 42 and

1 + 29 = 33 ∗ 19

would have 513 < 114.

Clearly, all the above four inequality are not true. Thus (ii) cannot hold.

4.2 ABC Conjecture

Suppose that A, B, and C, be integers are each nonzero, relatively prime factor, and if

A+B = C

Then for every ϵ > 0 there exist a constant K(ϵ) > 0 such that,

max{|A|, |B|, |C|} ≤ K(ϵ) Rad(ABC)1+ϵ

we will define ABC-triple as a triple (A,B,C) with A,B,C being positive co-prime integers that

satisfy A+B = C with A < B. (1, 2, 3) would be the smallest example of an ABC-triple [Chapter

2 [14]] .

Second, we will define ABC-hit as an ABC-triple that satisfy Rad(ABC) < C. Looking at (1, 8, 9),

we can see that is an ABC-hit since 1 + 8 = 9, gcd(1, 8, 9) = 1 and

Rad(1 · 8 · 9) = Rad(1 · 23 · 362) = 2 · 3 = 6 < 9
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A few examples,

2 + 310 · 109 = 235, Rad(2 · 310 · 109 · 235) = 2 · 3 · 23 · 109 = 15042,

112 + 32 · 566 · 73 = 2621 · 23, Rad(221 · 32 · 56 · 73 · 112 · 23) = 2 · 3 · 5 · 7 · 11 · 23 = 53, 130

Now, For any positive integer i > 1, let N = N(i) =
∏

p|i p be the radical of i, P (i) be the greatest

prime factor of i and ω(i) be the number of distinct prime factors of i and we put N(1) = 1,

P (1) = 1 and ω(1) = 0. The well known Conjecture of Masser-Oesterl´e states (Laishram and

Shorey [9]) that

Conjecture 1.1. Oesterl´e and Masser’s abc-Conjecture: For any given ϵ > 0 there exists

a computable constant Cϵ depending only on ϵ such that if

a+ b = c (1)

where a, b, and c are co-prime positive integers, then

c ≤ Cϵ(
∏
p|abc

p)1+ϵ

It is known as abc-Conjecture; the name derives from using the letters a, b, and c in (1). The

abc−Conjecture has already become well known for the number of interesting consequences and

remains as one of the main open problems in number theory. Many famous Conjectures and

theorems in number theory would follow immediately from the abc−Conjecture. An explicit version

of this Conjecture due to Baker [9] is the following:

Conjecture 1.2. Explicit abc-Conjecture: Let a, b, and c be pairwise coprime positive

integer satisfying (1). Then

c <
6

5
N

(logN)ω

ω!

where N = N(abc) and ω = ω(N). We see when ω ∈ {0, 1} or N is odd then (1) does not

hold. Therefore we always have N even and ω ≥ 2 unless (a, b, c) = (1, 1, 2). We observe that

N = N(abc) ≥ 2 whenever a, b, c satisfy (1). We shall refer to Conjecture 1.1 as abc−Conjecture

and Conjecture 1.2 as explicit abc−Conjecture.

Conjecture 1.2 implies the next Explicit version of Conjecture 1.1
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Theorem 1. (Laishram and Shorey [9]) Assume Conjecture 1.2. Let a, b and c be pairwise

coprime positive integers satisfying (1) and N = N(abc). Then we have

c < N1+ 3
4

Further for 0 < ϵ ≤ 3
4 , there exists ωϵ depending only ϵ such that when

N = N(abc) ≥ Nϵ =
∏

p≤pϵ
p, we have

c < κϵN
1+ϵ (2)

where

κϵ =
6

5
√
2π max(ω, ωϵ)

≤ 6√
2πωϵ

with w = w(n). Here are some values of ϵ, ωϵ and Nϵ

ϵ 3
4

7
12

6
11

1
2

34
71

5
12

1
3

ωϵ 14 49 72 127 75 548 6460

Nϵ e37.1101 e204.75 e335.71 e679.585 e1004.763 e3894.57 e63727

Thus c < N2 which was Conjectured in Granville and Tucker [15].

I thank Professor Shanta Laishram for allowing me to include his proof in the project.

4.3 Results for the Proof of Theorem 1

For an Integer i > 0, pi is the ith prime. For a real x > 0, Let Θ(x) =
∏

p≤x p and θ(x) = log(Θ(x)).

We write log2 i for log(log i). We have

Lemma 2.1. We have

(i) pi ≥ i(log i+ log2 i− 1) for i ≥ 1

(ii) θ(pi) ≥ i(log i+ log2 i− 1.076869) for i ≥ 1

(iii) θ(x) < 1.000081x for x > 0

The estimates (i) is due to Dusart, see [16]. The estimate (ii) is ([17], Theorem 6). For estimate

(iii), see [18]. Proof of Theorem 1 by (Laishram and Shorey [9] )
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4.4 Proof of Theorem 1

Let ϵ > 0 and N ≥ 1 be an integer with W (N) = ω. Then N ≥ Θ(pω) or logN ≥ θ(p). Given ω,

we observe that Mϵ

(log M)ω is an increasing function for logM ≥ ω
ϵ . Let

X0(i) = i(log i+ log2 i− 1.076869).

Then θ(pω) ≥ ωX0(ω) by Lemma 2.1 (iii). Observe that X0(i) > 1 for i ≥ 5. Let wi ≥ 4 be

smallest ω such that

ϵX0(ω)− logX0(ω) ≥ 1 for all ω ≥ ω1 (3)

Note that ϵX0(ω) ≥ 1 for ω ≥ ω1 implying logN ≥ θ(pω) ≥ ωX0(ω) ≥ ω
ϵ for ω ≥ ω1 by Lemma

2.1 (iii). Therefore

ω!N ϵ

(logN)ω
≥ ω!Θ(pω)

ϵ

(θ(ω))ω
≥ ω!eϵωX0(ω)

(ωX0(ω))ω
>

√
2πω(

ω

e
)ω

eϵωX0(ω)

(ωX0(ω))ω
for ω ≥ ω1.

Thus for ω ≥ ω1, we have from (3) that

log
( ω!eϵωX0(ω)

(ωX0(ω))ω

)
> log

√
2πω + ω(log(ω)− 2) + ϵωXo(ω)− ω(logω + logXo(ω))

> log
√
2πω + ω(ϵXo(ω)− logXo(ω)− 1) ≥ log

√
2πω

implying
ω!N ϵ

(logN)ω
≥ ω!Θ(pω)

ϵ

(θ(pω))ω
≥

√
2πω for ω ≥ ω1.

Define ωϵ be the smallest ω ≤ ω1 such that

θ(pω) ≥
ω

ϵ
and

ω!Θ(pω)
ϵ

(θ(pω))ω
≥

√
2πω for all ωϵ ≤ ω ≤ ω1. (4)

by taking the exact values of ω and θ. Then clearly

ω!N ϵ

(logN)ω
≥ ω!Θ(pω)

ϵ

(θ(pω))ω
≥

√
2πω for ω ≥ ωϵ. (5)

Here are values of ωϵ for some ϵ values.

ϵ 3
4

7
12

6
11

1
2

34
71

5
12

1
3

ωϵ 14 49 72 127 75 548 6460
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Let ω < ωϵ and N ≥ θ(ωϵ.) Then logN ≥ θ(ωϵ) ≥ ωϵ

ϵ . Therefore

ω!N ϵ

(logN)ω
≥ ω!Θ(pω)

ϵ

(θ(pω))ω
=

ωϵ!Θ(pω)
ϵ

(θ(pω))ωϵ
.
ω!

ωϵ
(θ(pωϵ))

ωϵ−ω >
√
2πωϵ

ω!ωϵ
ωϵ−ω

ωϵ!
≥

√
2πωϵ.

Combining this with (10,) we obtain

(logN)ω

ω!
<

N ϵ√
2π max(ω, ωϵ)

≤ N ϵ

√
2πωϵ

for N ≥ Θ(ωϵ) (6)

Further

(logN)ω

ω!
<

5N ϵ

6
for N ≥ 1. (7)

For that let ϵ = 3
4 . Then ωϵ = 14 and we may assume that N < Θ(p14). Then ω = ω(N) < 14.

Observe that N ≥ Θ(pω) and N
3
4

(log N)w is increasing for logN ≥ 4ω
3 .

For 4 ≤ ω < 14, we check that

θ(pω) ≥
4ω

3
and

ω!Θ(pω)
3
4

(θ(pω))ω
>

6

5

implying (7) when 4 ≤ ω = ω(N) < 14. Thus we may assume that ω = ω(N) < 4.

We check that

ω!N
3
4

(logN)ω
>

6

5
at N = e

4w
3 (8)

for 1 ≤ ω < 4 implying (7) for N ≥ e
4w
3 . Thus we may assume that N < e

4w
3 . Then N ∈ {2, 3}

if ω = ω(N) = 1, N ∈ {6, 10, 12, 14} if ω = ω(N) = 2 and N ∈ {30, 42} if ω(N) = 3. For these

values of N too, we find that (8) is valid implying (7). Clearly (7) is valid when N = 1.

Now, Assume Conjecture 1.2. Let ϵ > 0 be given. Let a, b, c be the positive integers such that

a+ b = c and gcd(a, b) = 1.

By Conjecture 1.2, c < 6
5N

(log N)ω

ω! where N = N(abc). Now assertion 2 follows from (7). Let

0 < ϵ ≤ 3
4 and Nϵ = Θ(pωϵ

). By (6), we have

c <
6N1+ϵ

5
√
2π max(ω, ωϵ)

The table is obtained by taking the table values of ϵ, ωϵ given after (5) and computing Nϵ for those

ϵ given in the table. Hence the Theorem.
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