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1. Introduction 

The study of hypergeometric functions is more than 200 years old. They appear in the work of 

Euler, Gauss, Riemann, and Kummer. Their integral representations were studied by Barnes 

and Mellin, and special properties of them by mathematicians. The famous Gauss 

hypergeometric equation is everywhere in mathematical physics. For one-variable 

hypergeometric functions this interplay has been well understood for several decades. On the 

other hand, it is possible to extend each one of these approaches but one may get slightly 

different results. There has been a great revival of interest in the study of hypergeometric 

functions. It would be impossible to give even an introduction to this theory. This emphasizes 

the fact that I have chosen to highlight a number of topics which I hope will make the interested 

in further study of this beautiful subject, but I have made no attempt to give a comprehensive 

view of the field. There is no claim of originality in these notes. 

A special function is a function having a particular use in mathematical physics or some other 

branch of mathematics. Prominent examples include the Bessel functions, Gamma functions, 

Beta functions, Hypergeometric functions. Certain mathematical functions occur often enough 

in fields like physics and engineering to justify special consideration. They form a class of 

well-studied functions with an extensive literature and appropriately enough, are collectively 

called special functions. These functions carry such names as Bessel functions, Gamma 

functions, Beta functions, Hypergeometric functions and the like. Most of the special functions 



                                                                               

 
 

encountered in such applications have a common root in their relation to the hypergeometric 

function. The purpose of this research is to establish this relationship and use it to obtain many 

of the interesting and important properties of the special functions met in applied mathematics.  

2. Hypergeometric Function 

Definition: Hypergeometric function is denoted by 2𝐹1(𝛼, 𝛽; 𝛾; 𝑥 ) and is defined by   

2𝐹1(𝛼, 𝛽; 𝛾; 𝑥 ) = ∑
(𝛼)𝑟(𝛽)𝑟

(𝛾)𝑟  

𝑥𝑟

𝑟!

∞

𝑟=0

 

Where, 2 − refers to number of parameters in numerator  

            1 − refers to number of parameters in denominator                              

Remark. The series of R.H.S is  1 +
𝛼𝛽

𝛾

𝑥

1!
+

𝛼(𝛼+1)𝛽(𝛽+1)

𝛾(𝛾+1)

𝑥2

2!
+

𝛼(𝛼+1)(𝛼+2)𝛽(𝛽+1)(𝛽+2)

𝛾(𝛾+1)(𝛾+2)

𝑥3

3!
+ ⋯ 

is called the Gauss Series or the ordinary hypergeometric series. It is represented by the symbol  

2𝐹1(𝛼, 𝛽; 𝛾; 𝑥) 

In particular, if 𝛼 = 1, 𝛽 = 𝛾, then the above series become,  

1 + 𝑥 + 𝑥2 + 𝑥3 + ⋯, which is geometric series. 

The generalized hypergeometric function with p numerator and q denominator parameters is 

defined by,               𝑝𝐹𝑞(𝑎1 , 𝑎2 , … , 𝑎𝑝; 𝑏1, 𝑏2, … , 𝑏𝑞; 𝑧) 

                              = 𝑝𝐹𝑞 (
𝑎1 , 𝑎2, … , 𝑎𝑝

𝑏1 , 𝑏1, … , 𝑏𝑞
; 𝑧) = ∑

(𝑎1)𝑟,(𝑎2)𝑟,…,(𝑎𝑝)𝑟

(𝑏1)𝑟,(𝑏2)𝑟,…,(𝑏𝑞)𝑟

𝑧𝑟

𝑟!

∞
𝑟=0  



                                                                               

 
 

3. Product of hypergeometric series 

Generalization of Gauss functions obtained by considering the product of two Gauss functions, 

i.e. 

2𝐹1(𝑎, 𝑏; 𝑐; 𝑥) 𝐹12 (𝑎′ , 𝑏′; 𝑐′; 𝑦) = ∑
(𝑎)𝑚(𝑎′)𝑛(𝑏)𝑚(𝑏′)𝑛

(𝑐)𝑚(𝑐′)𝑛

𝑥𝑚

𝑚!

𝑦𝑛

𝑛!

∞
𝑚,𝑛=0 . 

led to distinct possibilities of new functions. One such possibility, however gives us the double 

series, 

∑
(𝑎)𝑚+𝑛(𝑏)𝑚+𝑛

(𝑐)𝑚+𝑛

𝑥𝑚

𝑚!

𝑦𝑛

𝑛!
∞
𝑚,𝑛=0 . 

which is simply the Gaussian series 2𝐹1[𝑎, 𝑏; 𝑐; 𝑥 + 𝑦] 

4. Gamma Function 

Definition: Let x be any positive number then the definite integral  

𝛤(𝑥) = ∫ 𝑡𝑥−1 exp(−𝑡) 𝑑𝑡,   𝑥 >
∞

0

0 

Apart from the elementary transcendental functions such as the exponential and trigonometric 

functions and their inverses, the Gamma function is probably the most important transcendental 

function. It was defined by Euler to interpolate the factorials at non-integer arguments. 

Following Euler, we define,  𝛤(𝑥) = ∫ 𝑡𝑥−1 exp(−𝑡) 𝑑𝑡,   𝑥 >
∞

0
0 

and call it the Gamma function. 



                                                                               

 
 

This improper integral exists for complex z ∈ C with Re z > 0 (or, if you prefer only to think 

of real variables, for real z > 0). Using integration by parts, we get the fundamental functional 

equation 

𝛤(𝑥 + 1) = ∫ 𝑡𝑥𝑒−𝑡𝑑𝑡 =  −𝑡𝑥𝑒−𝑡| + 𝑥 ∫ 𝑡𝑥−1𝑒−𝑡𝑑𝑡
∞

0

∞

0
= 𝑥𝛤(𝑥). 

From the initial value 

𝛤(1) = ∫ 𝑒−𝑡𝑑𝑡 =
∞

0
𝑒−𝑡| = 1. 

it follows further by induction that 

 𝛤(𝑥 + 1) = 𝑥! , where x is a positive integer 

 𝛤 (
1

2
) = √𝜋 

Beta Function 

Definition: The Beta function denoted by  𝛽(𝑥, 𝑦) is defined as 

𝛽(𝑥, 𝑦) = ∫ 𝑡𝑥−1(1 − 𝑡)𝑦−1 𝑑𝑡,
1

0

       𝑥, 𝑦 > 0 

 𝛽(𝑥, 𝑦) = 𝛽(𝑦, 𝑥) 

 𝛽(𝑥, 𝑦) = 2 ∫ 𝑠𝑖𝑛2𝑥−1𝜃𝑐𝑜𝑠2𝑦−1𝜃 𝑑𝜃  
𝜋

2
0

 

 ∫ 𝑠𝑖𝑛𝑥𝜃𝑐𝑜𝑠𝑦𝜃 𝑑𝜃 = 
𝜋

2
0

1

2
𝛽 (

𝑥+1

2
,

𝑦+1

2
) 

5. Relationship between Gamma and Beta functions 

𝛽(𝑥, 𝑦) =  
𝛤(𝑚)𝛤(𝑛)

𝛤(𝑚 + 𝑛)
 



                                                                               

 
 

6. Regular and Irregular singularities of a Differential Equations 

Singular points are classified as regular or irregular in the following way. If 𝑃(𝑧) or 𝑄(𝑧) has 

a singularity  at  𝑧0 so that 𝑢′′(𝑧0) cannot be obtained for constructing the Taylor series of u(z), 

then the differential equation has a regular singularity if and only if both (𝑧 − 𝑧0)𝑃(𝑧) and 

(𝑧 − 𝑧0)2𝑄(𝑧) are analytic at 𝑧0. Otherwise, the singularity at 𝑧 = 𝑧0 is irregular. 

7. Hypergeometric Equation in term of Differential Equation 

All of the differential equations we encounter in this book have at most three singularities. 

For these equations, the functions P(z) and Q(z) in Eq. (14) are rational. By an appropriate 

change of variable, these singularities may be transformed to three points (0,1, ∞), in which 

case the differential equation takes the form. Hypergeometric equation: solution around z = 0, 

the hypergeometric series, 

 𝑓(𝑎, 𝑏; 𝑐; 𝑧) = ∑
(𝑎)𝑛(𝑏)𝑛

(𝑐)𝑛

∞
0

𝑧𝑛

𝑛!
 satisfy the second order differential equation.  

𝑧(1 − 𝑧)𝐹′′ + [𝑐 − (𝑎 + 𝑏 + 1)]𝐹′ − 𝑎𝑏𝐹 = 0                                                                     (i)        

known as the hypergeometric equation.                                       

This is Gauss's hypergeometric equation. The parameters a, b, and c are independent of z and, 

in general, may be complex. 

In applying the series method, we assume a solution of the form,  𝑢(𝑧) = ∑ 𝑎𝑛𝑧𝑛+𝑠∞
𝑛=0  

and substitute this series into Eq. (i) to obtain 



                                                                               

 
 

(𝑧 − 𝑧2) ∑ 𝑎𝑛(𝑛 + 𝑠)(𝑛 + 𝑠 − 1)𝑧𝑛+𝑠−2

∞

𝑛=0

+ [𝑐 − (𝑎 + 𝑏 + 1)𝑧] ∑ 𝑎𝑛(𝑛 + 𝑠)𝑧𝑛+𝑠−1 − 𝑎𝑏

∞

𝑛=0

∑ 𝑎𝑛𝑧𝑛+𝑠

∞

𝑛=0

= 0 

Now let us collect terms with powers of z which look the same. Then 

𝑎𝑛+1 =
(𝑛 + 𝑎)(𝑛 + 𝑏)

(𝑛 + 𝑐)(𝑛 + 1)
𝑎𝑛 

The first few of these coefficients are,   

𝑎1 =
𝑎𝑏

𝑐
𝑎0, 

𝑎2 =
(𝑎+1)(𝑏+1)

2(𝑐+1)
𝑎1 =

𝑎(𝑎+1)𝑏(𝑏+1)

1·2𝑐(𝑐+1)
𝑎0, 

𝑎3 =
(𝑎+2)(𝑏+2)

3(𝑐+2)
𝑎2 =

𝑎(𝑎+1)(𝑎+2)𝑏(𝑏+1)(𝑏+2)

1·2·𝑐(𝑐+1)(𝑐+2)
𝑎0, 

If we continue the pattern, the nth coefficient is  

𝑎3 =
(𝑎+2)(𝑏+2)

3(𝑐+2)
𝑎2 =

𝑎(𝑎+1) … (𝑎+𝑛−1)𝑏(𝑏+1)…(𝑏+𝑛−1)

𝑛!𝑐(𝑐+1)…(𝑐+𝑛−1)
𝑎0, 

So, as a solution to Eq. (i),    

𝑢(𝑧) = 𝑎0 [1 + ∑
𝑎(𝑎+1)(𝑎+2) … (𝑎+𝑛−1)𝑏(𝑏+1)(𝑏+2)…(𝑏+𝑛−1)

𝑛!𝑐(𝑐+1)…(𝑐+𝑛−1)
𝑧𝑛∞

𝑛=0 ], 

By using Pochhammer symbol, the expression in square brackets will be 

𝐹(𝑎, 𝑏; 𝑐; 𝑧) = ∑
(𝑎)𝑛(𝑏)𝑛

𝑛!(𝑐)𝑛
𝑧𝑛∞

𝑛=0 ,                                                                                      (ii) 

The function 𝐹(𝑎, 𝑏; 𝑐; 𝑧) defined by this series is the hypergeometric function. 



                                                                               

 
 

8. Applications of Hypergeometric Functions 

The Simple Pendulum: 

For an application of the hypergeometric function consider the exact solution of the simple 

pendulum problem. A simple pendulum consists of a point mass m attached to one end of a 

massless rod of length L. The other end of the rod is fixed at a point such that the system can 

swing freely under the influence of gravity. 

The two forces exerted on the mass are the weight mg and the tension T in the rod. On resolving 

the equation of motion (Newton's second law) into two components  

we have,  centripetal: 𝑇 − 𝑚𝑔𝑐𝑜𝑠𝜃 =
𝑚𝑣2

𝐿
, 

                tangential: −𝑚𝑔𝑠𝑖𝑛𝜃 =
𝑚𝑑2

𝑑𝑡2
(𝐿𝜃) 

By rearranging the tangential equation, we get 

𝑑2𝜃

𝑑𝑡 2
+

𝑔

𝐿
𝑠𝑖𝑛𝜃 = 0, second order differential equation. After further calculation, 

The complete elliptic integral of the second kind is related to the hypergeometric function by 

𝐸(𝐾) = ∫ √1 − 𝑘2𝑠𝑖𝑛2∅ 𝑑∅ =
𝜋

2
𝐹 (

−1

2
,
1

2
; 1; 𝑘2)

𝜋
2

0

 

The hypergeometric Function are used to solve, 

a. One-Dimensional Harmonic Oscillator problem. 

b. Cylinder Wave Guide Problem 

c. The Vibrating Membrane Problem, etc 



                                                                               

 
 

9. Some important deductions of the hypergeometric functions 

We know that, 

2𝐹1(𝛼, 𝛽; 𝛾; 𝑧) = 1 +
𝛼𝛽

𝛾

𝑥

1!
+

𝛼(𝛼 + 1)𝛽(𝛽 + 1)

𝛾(𝛾 + 1)

𝑥2

2!
+

𝛼(𝛼 + 1)(𝛼 + 2)𝛽(𝛽 + 1)(𝛽 + 2)

𝛾(𝛾 + 1)(𝛾 + 2)

𝑥3

3!
+ ⋯ 

 𝐹(∗;∗; 𝑧) = 𝑒𝑧 

 𝐹(−𝑎;∗; 𝑧) = (1 − 𝑧)𝑎 

 𝐹 (∗,
1

2
; −

1

4
𝑧2) = cos(𝑧) 

 𝑧𝐹 (∗,
3

2
; −

1

4
𝑧2) = sin(𝑧) 

 𝑧𝐹(1,1; 2; 𝑧) = log(1 − 𝑧) = − (𝑧 +
𝑧2

2
+

𝑧3

3
+ ⋯ ) 

10. Some Important Results about Generalized Hypergeometric and 

Confluent Hypergeometric Functions  

Recently, some generalizations of the generalized Gamma, Beta, Gauss hypergeometric and 

confluent hypergeometric functions have been introduced in literature. The nth derivative of 

𝑧𝑠𝐹(𝛼,β)(𝑎, 𝑏;  𝑐;  𝑧) with respect to the variable z in a closed formula of hypergeometric 

function itself is obtained. 

In mathematics, there are several special functions that are of particular significance and are 

used in many applications. Some of special functions find applications in such diverse areas 

as astrophysics, fluid dynamics and quantum physics. Examples of such well-known functions 

are the Gamma, Beta and hypergeometric functions. Next, extensions Gauss hypergeometric 



                                                                               

 
 

function (GHF) and confluent hypergeometric function (CHF) have been extensively studied 

inserting a regularization factor 𝑒
−𝑝

𝑡 . 

The following extension of the gamma function is introduced 

                             𝛤𝑝(𝑥) = ∫ 𝑡𝑥−1 exp (−𝑡 −
𝑝

𝑡
) 𝑑𝑡, 𝑅𝑒(𝑝) > 0

∞

0
.                                        (1) 

The extension of Euler’s beta function is considered in the following form  

                            𝛽𝑝(𝑥) = ∫ 𝑡𝑥−1(1 − 𝑡)𝑦−1 exp (
𝑝

𝑡(1−𝑡)
) 𝑑𝑡, 𝑅𝑒(𝑝) > 0

1

0
.               

                            𝑅𝑒(𝑝) > 0, 𝑅𝑒(𝑥) > 0, 𝑅𝑒(𝑦) > 0,                                                            (2) 

and  

                            𝛤0(𝑥) = 𝛤(𝑥) 𝑎𝑛𝑑 𝛽0(𝑥, 𝑦) = 𝛽(𝑥, 𝑦) 

Using (2) used 𝛽𝑝(𝑥, 𝑦) to extent the hypergeometric function, known as the extended Gauss 

hypergeometric function (EGHF), as follows: 

                              𝐹𝑝(𝑎, 𝑏; 𝑐; 𝑧) = ∑ (𝑎)𝑛
∞
𝑛=0

𝛽𝑝(𝑏+𝑛,𝑐−𝑏)

𝛽(𝑏,𝑐−𝑏)

𝑧𝑛

𝑛!
,                                        

𝑝 ≥ 0, 𝑅𝑒(𝑏) > 0,                                                                  (3) 

where (𝑎)𝑛 denotes the  pochhammer symbol define by 

(𝑎)𝑛 =
𝞒(𝒂 + 𝒏)

𝞒(𝒂)
 

= {
1, 𝑛 = 0;  𝑎 ∊ ℂ/{0}

𝑎(𝑎 + 1)(𝑎 + 2) … (𝑎 + 𝑛 − 1),   𝑛 ∊  ℕ, 𝑎 ∊ ℂ
 



                                                                               

 
 

the integral representation of Euler’s type function is 

𝐹𝑝(𝑎, 𝑏; 𝑐; 𝑧) =
1

𝛽(𝑏, 𝑐 − 𝑏)
∫ 𝑡𝑏−1(1 − 𝑡)𝑐−𝑏−1(1 − 𝑧𝑡)−𝑎 exp (

−𝑝

𝑡(1 − 𝑡)
) 𝑑𝑡,

1

0

 

         𝑝 ≥ 0 𝑎𝑛𝑑 |arg (1 − 𝑧)| < 𝜋 < 𝑝;  𝑅𝑒(𝑐) > 𝑅𝑒(𝑏) > 0,                                            (4) 

the extended hypergeometric functions (ECHF) is defined as 

                                          𝜑𝑝(𝑏; 𝑐; 𝑧) = ∑ (𝑎)𝑛
∞
𝑛=0

𝛽𝑝(𝑏+𝑛,𝑐−𝑏)

𝛽(𝑏,𝑐−𝑏)

𝑧𝑛

𝑛!
,                                             

                                                           𝑝 ≥ 0, 𝑅𝑒(𝑐) > 𝑅𝑒(𝑏) > 0,                                       (5) 

The following generalized Euler’s gamma function (GEGF) is defined is  

𝛤𝑝
(𝛼,𝛽)(𝑥) = ∫ 𝑡𝑥−11𝐹

1 (𝛼, 𝛽; −𝑡 −
𝑝

𝑡
) 𝑑𝑡,

1

0

 

𝑅𝑒(𝛼) > 0, 𝑅𝑒(𝛽) > 0, 𝑅𝑒(𝑝) > 0, 𝑅𝑒(𝑥) > 0.                         (6) 

While, the generalized Euler’s beta function (GEBF) is given by 

𝛽𝑝
(𝛼,𝛽)(𝑥, 𝑦) = ∫ 𝑡𝑥−1(1 − 𝑡)𝑦−11𝐹

1 (𝛼, 𝛽;
−𝑝

𝑡(1 − 𝑡)
) 𝑑𝑡,

1

0

 

                             𝑅𝑒(𝑝) > 0, 𝑅𝑒(𝑥) > 0, 𝑅𝑒(𝑦) > 0, 𝑅𝑒(𝛼) > 0, 𝑅𝑒(𝛽) > 0.                  (7)    

The generalized (Gauss, resp. confluent) hypergeometric function (GGHF, resp., GCHF) are 

defined by,                          𝐹𝑝
(𝛼,𝛽)(𝑎, 𝑏; 𝑐; 𝑧) = ∑ (𝑎)𝑛

∞
𝑛=0

𝛽𝑝
(𝛼,𝛽)(𝑏+𝑛,𝑐−𝑏)

𝛽(𝑏,𝑐−𝑏)

𝑧𝑛

𝑛!
,                                   (8)             

And                                1𝐹
1

(𝛼,𝛽;𝑝)
(𝑏; 𝑐; 𝑧) = ∑

𝛽𝑝
(𝛼,𝛽)(𝑏+𝑛,𝑐−𝑏)

𝛽(𝑏,𝑐−𝑏)

𝑧𝑛

𝑛!

∞
𝑛=0 ,                                 (9) 



                                                                               

 
 

and the corresponding integral representations are given by, 

𝐹𝑝(𝑎, 𝑏; 𝑐; 𝑧) =
1

𝛽(𝑏, 𝑐 − 𝑏)
∫ 𝑡𝑏−1(1 − 𝑡)𝑐−𝑏−11𝐹

1 (𝛼, 𝛽;
−𝑝

𝑡(1 − 𝑡)
) (1 − 𝑧𝑡)−𝑎𝑑𝑡,

1

0

 

                    Re(𝑝) ≥ 0 𝑎𝑛𝑑 |arg (1 − 𝑧)| < 𝜋 < 𝑝;  𝑅𝑒(𝑐) > 𝑅𝑒(𝑏) > 0,                             (10) 

and             1𝐹
1(𝑏; 𝑐; 𝑧) =

1

𝛽(𝑏,𝑐−𝑏)
∫ 𝑡𝑏−1(1 − 𝑡)𝑐−𝑏−11𝐹

1 (𝛼, 𝛽;
−𝑝

𝑡(1−𝑡)
) 𝑑𝑡,

1

0
 

p≥ 0, 𝑅𝑒(𝑐) > 𝑅𝑒(𝑏) > 0,                                                 (11) 

The generalized hypergeometric function with p numerator and q denominator parameters is 

defined by  𝑝𝐹𝑞(𝑎1 , 𝑎2 , … , 𝑎𝑝; 𝑏1, 𝑏2, … , 𝑏𝑞; 𝑧) 

                              =  𝑝𝐹𝑞 (
𝑎1 , 𝑎2, … , 𝑎𝑝

𝑏1, 𝑏1, … , 𝑏𝑞
; 𝑧) = ∑

(𝑎1)𝑟,(𝑎2)𝑟,…,(𝑎𝑝)𝑟

(𝑏1)𝑟,(𝑏2)𝑟,…,(𝑏𝑞)𝑟

𝑧𝑟

𝑟!
∞
𝑛=0 , 

 

 

 

 

 

 

 

 



                                                                               

 
 

Theorem 1. For the generalized Gauss hypergeometric function, Prove that:  

𝑑𝑛

𝑑𝑧𝑛
{𝑧𝑠𝐹𝑝

(𝛼,𝛽)
(𝑎, 𝑏; 𝑐; 𝑧)} = (−1)𝑠 𝑎𝑛𝑏𝑛

𝑐𝑛

∑ (𝑎 + 𝑛)𝑤
∞
𝑤=0

1

(1−𝑎−𝑤−𝑛)𝑠
∗

                                                             ∗
1

(𝑤+𝑛+1)(−𝑠)

𝛽𝑝
(𝛼,𝛽)(𝑏+𝑤+𝑛−𝑠,𝑐−𝑏)

𝛽(𝑏+𝑛,𝑐−𝑏)

𝑧𝑤

𝑤!
                               (12)     

Proof. Substitute (8) into the left hand side of (12), we have 

𝑑𝑛

𝑑𝑧𝑛
{𝑧𝑠𝐹𝑝

(𝛼,𝛽)
(𝑎, 𝑏; 𝑐; 𝑧)} =  𝑧𝑠 ∑ (𝑎)𝑟

∞
𝑟=0

𝛽𝑝
(𝛼,𝛽)(𝑏+𝑛,𝑐−𝑏)

𝛽(𝑏,𝑐−𝑏)

𝑧𝑟

𝑟!
  

= ∑ (𝑎)𝑟
∞
𝑟=0

𝛽𝑝
(𝛼,𝛽)(𝑏+𝑟,𝑐−𝑏)

𝛽(𝑏,𝑐−𝑏)

𝑧𝑟+𝑠

𝑟!
    

 =  ∑ (𝑎)𝑟
∞
𝑟+𝑠=𝑛

𝛽𝑝
(𝛼,𝛽)(𝑏+𝑟,𝑐−𝑏)

𝛽(𝑏,𝑐−𝑏)
(𝑟 + 𝑠)(𝑟 + 𝑠 − 1) … (𝑟 + 𝑠 − 𝑛 + 1)

𝑧𝑟+𝑠−𝑛

𝑟!
      

= ∑ (𝑎)𝑟
∞
𝑟+𝑠=𝑛

𝛽𝑝
(𝛼,𝛽)(𝑏+𝑟,𝑐−𝑏)

𝛽(𝑏,𝑐−𝑏)
{

(𝑟+𝑠)!

(𝑟+𝑠−𝑛)!
}

𝑧𝑟+𝑠

𝑟!
     

Writing r + s – n = w, gives 

𝑑𝑛

𝑑𝑧𝑛
{𝑧𝑠𝐹𝑝

(𝛼,𝛽)
(𝑎, 𝑏; 𝑐; 𝑧)} = ∑ (𝑎)𝑤+𝑠−𝑛

∞
𝑤=0

𝛽𝑝
(𝛼,𝛽)(𝑏+𝑤+𝑠−𝑛,𝑐−𝑏)

𝛽(𝑏,𝑐−𝑏)
{

(𝑤+𝑛)!

(𝑤+𝑠−𝑛)!
}

𝑧𝑤

𝑤!
     

Using a deduction of pochammer symbol,  

(𝑎)𝑤+𝑛 = (𝑎)𝑛(𝑎 + 𝑛)𝑤  ,   (𝑎)𝑛−𝑘 =
(−1)𝑘(𝑎)𝑛

(1−𝑎−𝑛)𝑘
   ,    

and  (𝑎)𝑤+𝑛−𝑠 =
(−1)𝑠(𝑎)𝑛+𝑤

(1−𝑎−𝑤−𝑛)𝑠
  ,   

 

 



                                                                               

 
 

we get  

𝑑𝑛

𝑑𝑧𝑛
{𝑧𝑠𝐹𝑝

(𝛼,𝛽)
(𝑎, 𝑏; 𝑐; 𝑧)} = (−1)𝑠 ∑

(𝑎)𝑛(𝑎)𝑛+𝑤

(1−𝑎−𝑤−𝑛)𝑠
 ∞

𝑤=0

𝛽𝑝
(𝛼,𝛽)

(𝑏+𝑤+𝑛−𝑠,𝑐−𝑏)

𝛽(𝑏,𝑐−𝑏)

𝛤(𝑤+𝑛+1)

𝛤(𝑤+𝑛−𝑠+1)

𝑧𝑤

𝑤!
     

= (−1)𝑠(𝑎)𝑛 ∑
(𝑎)𝑛+𝑤

(1−𝑎−𝑤−𝑛)𝑠
 ∞

𝑤=0

𝛽𝑝
(𝛼,𝛽)(𝑏+𝑤+𝑛−𝑠,𝑐−𝑏)

𝛽(𝑏,𝑐−𝑏)

𝛤(𝑤+𝑛+1)

𝛤(𝑤+𝑛−𝑠+1)

𝑧𝑤

𝑤!
   

By making use of formula 𝛽(𝑏, 𝑐 − 𝑏) =
𝑏𝑛

𝑐𝑛
𝛽(𝑏 + 𝑛, 𝑐 − 𝑏)   [1], we have 

𝑑𝑛

𝑑𝑧𝑛
{𝑧𝑠𝐹𝑝

(𝛼,𝛽)
(𝑎, 𝑏; 𝑐; 𝑧)} = (−1)𝑠 𝑎𝑛𝑏𝑛

𝑐𝑛

∑ (𝑎 + 𝑛)𝑤
∞
𝑤=0

1

(1−𝑎−𝑤−𝑛)𝑠
∗

                                                     
1

(𝑤+𝑛+1)(−𝑠)

𝛽𝑝
(𝛼,𝛽)(𝑏+𝑤+𝑛−𝑠,𝑐−𝑏)

𝛽(𝑏+𝑛,𝑐−𝑏)

𝑧𝑤

𝑤!
 ,  

The particular expression for the derivatives of GGHF can be obtained as special cases from 

formula (7).  

These are given in the following corollaries: 

Corollary 1. Substitution of 𝑠 = 0 and 𝑛 = 1 into (12), then we get the 1st derivative of 

GGHF,         
𝑑

𝑑𝑧
{𝑧𝑠𝐹𝑝

(𝛼,𝛽)
(𝑎, 𝑏; 𝑐; 𝑧)} =

𝑎𝑏

𝑐
𝐹𝑝

(𝛼,𝛽)
(𝑎 + 1, 𝑏 + 1; 𝑐 + 1; 𝑧).  

Corollary 2. Substitution of 𝑠 = 0, into (12), make the nth derivative of GGHF as, 

𝑑

𝑑𝑧
{𝑧𝑠𝐹𝑝

(𝛼,𝛽)
(𝑎, 𝑏; 𝑐; 𝑧)} =

𝑎𝑛𝑏𝑛

𝑐𝑛
𝐹𝑝

(𝛼,𝛽)
(𝑎 + 𝑛, 𝑏 + 𝑛; 𝑐 + 𝑛; 𝑧).  

 

 

 



                                                                               

 
 

Theorem 2. For the generalized Gauss hypergeometric function (GGHF), the integral, 

∫ 𝑥𝑛−1(1 − 𝑥)𝑚−1𝐹𝑝
(𝛼,𝛽)(𝑎, 𝑏; 𝑐; 𝑘𝑥)𝑑𝑥 = 

1

0
 𝛽(𝑛, 𝑚) ∑

(𝑎)𝑟(𝑛)𝑟

(𝑛+𝑚)𝑟

∞
𝑟=0

𝛽𝑝
(𝛼,𝛽)(𝑏+𝑟,𝑐−𝑏)

𝛽(𝑏,𝑐−𝑏)

𝑘𝑟

𝑟!
,      (13) 

Proof. Using (8) with relation (13), gives 

        ∫ 𝑥𝑛−1(1 − 𝑥)𝑚−1 ∑ (𝑎)𝑛
∞
𝑛=0

𝛽𝑝
(𝛼,𝛽)(𝑏+𝑟,𝑐−𝑏)

𝛽(𝑏,𝑐−𝑏)

(𝑘𝑥)𝑟

𝑟!
 

1

0
𝑑𝑥 

= ∑ (𝑎)𝑟
∞
𝑛=0

𝛽𝑝
(𝛼,𝛽)(𝑏+𝑟,𝑐−𝑏)

𝛽(𝑏,𝑐−𝑏)

𝑘𝑟

𝑟!
∫ 𝑥𝑛−1(1 − 𝑥)𝑚−11

0
𝑑𝑥,   

= ∑ (𝑎)𝑟
∞
𝑛=0

𝛽𝑝
(𝛼,𝛽)(𝑏+𝑟,𝑐−𝑏)

𝛽(𝑏,𝑐−𝑏)

𝑘𝑟

𝑟!
 𝛽(𝑛 + 𝑟, 𝑚),    

= ∑ (𝑎)𝑟
∞
𝑛=0

𝛽𝑝
(𝛼,𝛽)(𝑏+𝑟,𝑐−𝑏)

𝛽(𝑏,𝑐−𝑏)

𝑘𝑟

𝑟!
 [

𝛤(𝑛+𝑟)𝛤(𝑚)

𝛤(𝑚+𝑛+𝑟)
],  

= 𝛽(𝑛, 𝑚) ∑ (𝑎)𝑟
∞
𝑛=0

𝛽𝑝
(𝛼,𝛽)(𝑏+𝑟,𝑐−𝑏)

𝛽(𝑏,𝑐−𝑏)

𝑘𝑟

𝑟!
 [

𝛤(𝑛+𝑟)

𝛤(𝑚+𝑛+𝑟)

𝛤(𝑚+𝑛)

𝛤(𝑛)
],  

= 𝛽(𝑛, 𝑚) ∑
(𝑎)𝑟(𝑛)𝑟

(𝑛+𝑚)𝑟

∞
𝑛=0

𝛽𝑝
(𝛼,𝛽)(𝑏+𝑟,𝑐−𝑏)

𝛽(𝑏,𝑐−𝑏)

𝑘𝑟

𝑟!
 ,  

This complete the proof of the theorem. 

Corollary 1. The integral of the classical (GHF), which is obtained by taking p = 0, is 

∫ 𝑥𝑛−1(1 − 𝑥)𝑚−12𝐹
1(𝑎, 𝑏; 𝑐; 𝑘𝑥)𝑑𝑥 = 

1

0
 𝛽(𝑛, 𝑚)3𝐹

2(𝑎,𝑏,𝑛 
𝑛+𝑚

; 𝑘).      

Corollary 2. The integral of (GCHF) is given by, 

∫ 𝑥𝑛−1(1 − 𝑥)𝑚−1𝐹𝑝
(𝛼,𝛽)(𝑏; 𝑐; 𝑘𝑥)𝑑𝑥

1

0

= 𝛽(𝑛 + 𝑟, 𝑚) ∑
𝛽𝑝

(𝛼,𝛽)(𝑏 + 𝑟, 𝑐 − 𝑏)

𝛽(𝑏, 𝑐 − 𝑏)

𝑘𝑟

𝑟!

∞

𝑛=0

 , 



                                                                               

 
 

Theorem 3. For the generalized Gauss hypergeometric function (GGHF), the integral, 

∫ 𝑥𝜇−1𝑒−𝑚2𝑥2
𝐹𝑝

(𝛼,𝛽)(𝑎, 𝑏; 𝑐; ±𝑛2𝑥2)𝑑𝑥 = 
1

0

𝛤(
𝜇

2
)

2𝑚𝜇
 ∑ (𝑎)𝑟

∞
𝑟=0 (

𝜇

2
)

𝑟

𝛽𝑝
(𝛼,𝛽)(𝑏+𝑟,𝑐−𝑏)

𝛽(𝑏,𝑐−𝑏)

(±
𝑛2

𝑥2 )

𝑟!
,    (14) 

Proof. By using (10), we have,         ∫ 𝑥𝜇−1𝑒−𝑚2𝑥2
𝐹𝑝

(𝛼,𝛽)(𝑎, 𝑏; 𝑐; ±𝑛2𝑥2)𝑑𝑥 
1

0
 

=
1

𝛽(𝑏,𝑐−𝑏)
∫ ∫ 𝑡𝑏−11

0
(1 − 𝑡)𝑐−𝑏−1(1 − (±𝑛2𝑥2)𝑡)−𝑎𝑥𝜇−1𝑒−𝑚2𝑥2

1𝐹
1 (𝛼, 𝛽;

−𝑝

𝑡(1−𝑡)
) 𝑑𝑥𝑑𝑡 

∞

0
  

However, (1 − (±𝑛2𝑥2)𝑡)−𝑎 = ∑
(𝑎)𝑟

𝑟!

∞
𝑟=0 (±𝑛2𝑥2)𝑡𝑟, so  

=
1

𝛽(𝑏, 𝑐 − 𝑏)
∑

(𝑎)𝑟

𝑟!
∫ ∫ 𝑡𝑏−1

1

0

(1
∞

0

∞

𝑟=0

− 𝑡)𝑐−𝑏−1(±1)𝑟𝑛2𝑟𝑒−𝑚2𝑥2
𝑥𝜇+2𝑟−11𝐹

1 (𝛼, 𝛽;
−𝑝

𝑡(1 − 𝑡)
) 𝑑𝑥𝑑𝑡 

Using equation (7),  ∑
(𝑎)𝑟

𝛽(𝑏,𝑐−𝑏)
∞
𝑟=0 ∫ 𝑒−𝑚2𝑥2∞

0
𝑥𝜇+2𝑟−1𝑑𝑥𝛽𝑝

(𝛼,𝛽)(𝑏 + 𝑟, 𝑐 − 𝑏)
(±𝑛2)𝑟

𝑟!
.            

Using the definition of Gamma function, Γ(𝑥) = ∫ 𝑡𝑥−1𝑒−𝑡𝑑𝑡,
∞

0
 and letting 𝑚2𝑥2 = 𝑤, 

                     ∫ 𝑒−𝑚2𝑥2∞

0
𝑥𝜇+2𝑟−1𝑑𝑥 =  

1

2𝑚
∫ 𝑒−𝑤∞

0
(

√𝑤

𝑚
)𝜇+2𝑟−1 1

√𝑤
𝑑𝑥 =

1

2

𝑚𝑢+2𝑟
Γ (

𝜇

2
+ 𝑟), 

then,              ∫ 𝑥𝜇−1𝑒−𝑚2𝑥2
𝐹𝑝

(𝛼,𝛽)(𝑎, 𝑏; 𝑐; ±𝑛2𝑥2)𝑑𝑥 
1

0
 

=
1

2
∑

(𝑎)𝑟

𝛽(𝑏, 𝑐 − 𝑏)

∞

𝑟=0

1

𝑚𝑢+2𝑟
Γ (

𝜇

2
+ 𝑟) 𝛽𝑝

(𝛼,𝛽)(𝑏 + 𝑟, 𝑐 − 𝑏)
(±𝑛2)𝑟

𝑟!
, 

=
1

2
∑

(𝑎)𝑟

𝛽(𝑏, 𝑐 − 𝑏)

∞

𝑟=0

1

𝑚𝑢+2𝑟
(
𝜇

2
)𝑟Γ (

𝜇

2
) 𝛽𝑝

(𝛼,𝛽)(𝑏 + 𝑟, 𝑐 − 𝑏)
(±𝑛2)𝑟

𝑟!
, 



                                                                               

 
 

=
1

2
∑

(𝑎)𝑟

𝑚𝑢

∞

𝑟=0
(
𝜇

2
)𝑟Γ (

𝜇

2
)

𝛽𝑝
(𝛼,𝛽)(𝑏 + 𝑟, 𝑐 − 𝑏)

𝛽(𝑏, 𝑐 − 𝑏)

(
±𝑛2

𝑚2 )𝑟

𝑟!
, 

=
Γ (

𝜇
2

)

2𝑚𝑢
∑ (𝑎)𝑟

∞

𝑟=0
(
𝜇

2
)𝑟

𝛽𝑝
(𝛼,𝛽)(𝑏 + 𝑟, 𝑐 − 𝑏)

𝛽(𝑏, 𝑐 − 𝑏)

(
±𝑛2

𝑚2 )𝑟

𝑟!
, 

Corollary 1.                     ∫ 𝑥𝜇−1𝑒−𝑚2𝑥2
𝐹𝑝

(𝛼,𝛽)(𝑎, 𝑏; 𝑐; ±𝑛2𝑥2)𝑑𝑥
1

0
                                

        =
Γ (

𝜇
2

)

2𝑚𝑢
∑

(𝑎)𝑟(𝑏)𝑟

(𝑐)𝑟

∞

𝑟=0
(
𝜇

2
)𝑟

(
±𝑛2

𝑚2 )𝑟

𝑟!
, 

                                            =
Γ(

𝜇

2
)

2𝑚𝑢
3𝐹

2 (
𝑎,𝑏,𝜇

2
 

𝑐
;

±𝑛2

𝑚2
) 

Corollary 2.           ∫ 𝑥𝜇−1𝑒−𝑚2𝑥2
𝐹𝑝

(𝛼,𝛽)(𝑎, 𝑏; 𝑐; ±𝑛2𝑥2)𝑑𝑥
1

0
 

                              =
1

2𝑚𝑢
∑ Γ (

𝜇

2
+ 𝑟)∞

𝑟=0
𝛽𝑝

(𝛼,𝛽)(𝑏+𝑟,𝑐−𝑏)

𝛽(𝑏,𝑐−𝑏)

(
±𝑛2

𝑚2 )𝑟

𝑟!
 

Corollary 3.           ∫ 𝑥𝜇−1𝑒−𝑚2𝑥2
𝑝𝐹

𝑞 (
(𝑎)1(𝑎)2…..(𝑎)𝑝 
(𝑏)1(𝑏)2…..(𝑏)𝑞

; ±𝑛2𝑥2) 𝑑𝑥
1

0
 

=
Γ (

𝜇
2

)

2𝑚𝑢
𝑝 + 1𝐹

𝑞 (
(𝑎)1(𝑎)2 … . . (𝑎)𝑝,

𝜇
2

 

(𝑏)1(𝑏)2 … . . (𝑏)𝑞

; ±
𝑛2

𝑚2
) 𝑑𝑥, 

Theorem 4. For the generalized Gauss hypergeometric function (GGHF),  

∫ 𝑥𝑛−1(1 − 𝑥)𝑚−1𝐹𝑝
(𝛼,𝛽) (𝑎, 𝑏; 𝑐;

1−𝑥

2
) 𝑑𝑥 

1

0
= ∑ (𝑎)𝑟

∞
𝑟=0 𝛽(𝑛, 𝑚 + 𝑟)

𝛽𝑝
(𝛼,𝛽)(𝑏+𝑟,𝑐−𝑏)

𝛽(𝑏,𝑐−𝑏)

(
1

2
)𝑟

𝑟!
  

 



                                                                               

 
 

Proof.                      (1 −
(1−𝑥)

2
𝑡)

−𝑎

= ∑
𝑎𝑟

𝑟!

(1−𝑥)

2

𝑟

𝑡𝑟∞
0 , 

using (10),  

𝐹𝑝
(𝛼,𝛽) (𝑎, 𝑏; 𝑐;

1−𝑥

2
) =

1

𝛽(𝑏,𝑐−𝑏)
∫ 𝑡𝑏−1(1 − 𝑡)𝑐−𝑏−1  ∑

(𝑎)𝑟

𝑟!

∞
𝑟=0 (

1−𝑥

2
)

𝑟
𝑡𝑟1𝐹

1
(𝛼, 𝛽;

−𝑝

𝑡(1−𝑡)
) 𝑑𝑡

1

0
, 

=
1

𝛽(𝑏,𝑐−𝑏)
∑

(𝑎)𝑟

2𝑟𝑟!
∞
𝑟=0 ∫ ∫ 𝑥𝑛−1(1 − 𝑥)𝑚−1𝑡𝑏+𝑟−1(1 − 𝑡)𝑐−𝑏−1 1𝐹

1 (𝛼, 𝛽;
−𝑝

𝑡(1−𝑡)
) 𝑑𝑥𝑑𝑡

1

0

1

0
, 

=
1

𝛽(𝑏,𝑐−𝑏)
∑

(𝑎)𝑟

2𝑟𝑟!
∞
𝑟=0 ∫ 𝑥𝑛−1(1 − 𝑥)𝑚+𝑟−1𝑑𝑥 ∫ 𝑡𝑏+𝑟−1(1 − 𝑡)𝑐−𝑏−1 1𝐹

1 (𝛼, 𝛽;
−𝑝

𝑡(1−𝑡)
) 𝑑𝑡

1

0

1

0
, 

Using (7),    𝛽𝑝
(𝛼,𝛽)(𝑏 + 𝑟, 𝑐 − 𝑏) = ∫ 𝑡𝑏+𝑟−1(1 − 𝑡)𝑐−𝑏−11𝐹

1 (𝛼, 𝛽;
−𝑝

𝑡(1−𝑡)
) 𝑑𝑡

1

0
, 

which gives,          =
1

𝛽(𝑏,𝑐−𝑏)
∑ (𝑎)𝑟

∞
𝑟=0 𝛽(𝑛, 𝑚 + 𝑟)

𝛽𝑝
(𝛼,𝛽)(𝑏+𝑟,𝑐−𝑏)

𝛽(𝑏,𝑐−𝑏)

(
1

2
)𝑟

𝑟!
. 

Corollary 1.                 ∫ 𝑥𝑛−1(1 − 𝑥)𝑚−1𝐹𝑝
(𝛼,𝛽) (𝑎, 𝑏; 𝑐;

1−𝑥

2
) 𝑑𝑥 

1

0
 

= 𝛽(𝑛, 𝑚) ∑
(𝑎)𝑟(𝑏)𝑟

(𝑐)𝑟

∞
𝑟=0

(𝑚)𝑟

(𝑚+𝑛)𝑟

(
1

2
)

𝑟

𝑟!
,   

= 𝛽(𝑛, 𝑚)3𝐹
2 ( 𝑎,𝑏,𝑚 

𝑚+𝑛,𝑐 ;
1

2
). 

Corollary 2.                  ∫ 𝑥𝑛−1(1 − 𝑥)𝑚−1𝜑𝑝
(𝛼,𝛽) (𝑏; 𝑐;

1−𝑥

2
) 𝑑𝑥 

1

0
 

= ∑ (𝑎)𝑟
∞
𝑟=0 𝛽(𝑛, 𝑚 + 𝑟)

𝛽𝑝
(𝛼,𝛽)(𝑏+𝑟,𝑐−𝑏)

𝛽(𝑏,𝑐−𝑏)

(
1

2
)𝑟

𝑟!
. 

Corollary 3.                ∫ 𝑥𝑛−1(1 − 𝑥)𝑚−1𝑝𝐹
𝑞 (

(𝑎)1(𝑎)2…..(𝑎)𝑝 
(𝑏)1(𝑏)2…..(𝑏)𝑞

;
1−𝑥

2
) 𝑑𝑥

1

0
  

= 𝛽(𝑛, 𝑚)𝑝 + 1𝐹
𝑞+1 (

(𝑎)1(𝑎)2 … . . (𝑎)𝑝, 𝑚

(𝑏)1(𝑏)2 … . . (𝑏)𝑞, 𝑛 + 𝑚
;

1

2
) 𝑑𝑥 



                                                                               

 
 

Theorem 5. For the generalized Gauss hypergeometric function (GGHF),  

∫ (1 − 𝑥2)𝑚−1𝐹𝑝
(𝛼,𝛽) (𝑎, 𝑏; 𝑐;

1−𝑥

2
) 𝑑𝑥 

1

0
 = ∑ 22𝑚+𝑟−2∞

𝑟=0 𝛽(𝑚 + 𝑟, 𝑚)
𝛽𝑝

(𝛼,𝛽)
(𝑏+𝑟,𝑐−𝑏)

𝛽(𝑏,𝑐−𝑏)

(𝑎)𝑟(
1

2
)𝑟

𝑟!
 

Proof. Using (10), 

𝐹𝑝
(𝛼,𝛽) (𝑎, 𝑏; 𝑐;

1−𝑥

2
) =

1

𝛽(𝑏,𝑐−𝑏)
∫ 𝑡𝑏−1(1 − 𝑡)𝑐−𝑏−1 1𝐹

1 (𝛼, 𝛽;
−𝑝

𝑡(1−𝑡)
) ∑

(𝑎)𝑟

𝑟!

∞
𝑟=0 (

1−𝑥

2
)

𝑟
𝑡𝑟𝑑𝑡

1

0
,  

Then, ∫ (1 − 𝑥2)𝑚−1𝐹𝑝
(𝛼,𝛽) (𝑎, 𝑏; 𝑐;

1−𝑥

2
) 𝑑𝑥 

1

0
=

1

𝛽(𝑏,𝑐−𝑏)
∫ ∫ (1 − 𝑥2)𝑚−1𝑡𝑏−1(1 −

1

0

1

0

𝑡)𝑐−𝑏−1 1𝐹
1 (𝛼, 𝛽;

−𝑝

𝑡(1−𝑡)
) ∑

(𝑎)𝑟

𝑟!
∞
𝑟=0 (

1−𝑥

2
)

𝑟
𝑡𝑟𝑑𝑡𝑑𝑥,  

Let x = cos 𝜃 , 1 − x = 2 sin2(
𝜃

2
), and 1 + 𝑥 = 2 cos2(

𝜃

2
). Then, 

∫ (1 − 𝑥2)𝑚−1𝐹𝑝
(𝛼,𝛽) (𝑎, 𝑏; 𝑐;

1−𝑥

2
) 𝑑𝑥 

1

0
=

1

𝛽(𝑏,𝑐−𝑏)
∑

(𝑎)𝑟

2𝑟𝑟!
∞
𝑟=0 ∫ ∫ (2 sin2(

𝜃

2
))𝑟 (2 sin2(

𝜃

2
)2 cos2(

𝜃

2
))

𝑚−1
sin 𝜃 𝑡𝑏+𝑟−1(1 −

1

0

𝜋

2
0

𝑡)𝑐−𝑏−1 1𝐹
1 (𝛼, 𝛽;

−𝑝

𝑡(1−𝑡)
) 𝑑𝜃𝑑𝑡,  

=
1

𝛽(𝑏,𝑐−𝑏)
∑ ∫ ∫ 22𝑚+𝑟−1 sin2𝑚+2𝑟−1 (

𝜃

2
) cos2𝑚−1 (

𝜃

2
) 𝑡𝑏+𝑟−1(1 −

1

0

𝜋

2
0

∞
𝑟=0

𝑡)𝑐−𝑏−1 1𝐹
1 (𝛼, 𝛽;

−𝑝

𝑡(1−𝑡)
)

(𝑎)𝑟

2𝑟𝑟!
𝑑(

𝜃

2
)𝑑𝑡,  

∫ (1 − 𝑥2)𝑚−1𝐹𝑝
(𝛼,𝛽) (𝑎, 𝑏; 𝑐;

1−𝑥

2
) 𝑑𝑥 

1

0
   

Using (2) and (7), 

= ∑ 22𝑚+𝑟−2∞
𝑟=0 𝛽(𝑚 + 𝑟, 𝑚)

𝛽𝑝
(𝛼,𝛽)

(𝑏+𝑟,𝑐−𝑏)

𝛽(𝑏,𝑐−𝑏)

(𝑎)𝑟(
1

2
)𝑟

𝑟!
,  



                                                                               

 
 

11. Conclusion and future scope 

In this project, the nth derivative of Gauss hypergeometric functions and confluent 

hypergeometric functions in term of hypergeometric functions themselves is expressed. This 

project report has dealt with formulae expressing explicitly the generalized hypergeometric 

functions in term of classical hypergeometric function itself. Some results are obtained and 

hoping to extend the results for special function in the near future. 
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